McLaren MP4-12C In Details

Thu, 06/02/2011 - 18:05

The British sportscar maker released complete technical details of the upcoming MP4-12C supercar and confirmed its performance figures.

This magnificent high-tech hyper car is powered by a 600 hp V8 engine that enables it to go from 0 to 100 km/h in 3.3s (3.1s with optional Corsa tyres) and reach a top speed of 330kph (205mph).

Part of this amazing performance is due to the engine, and part of it to the lightness of the body and structure. They’ve used the same techniques they apply in making Formula 1 cars to make this car almost entirely out of carbon fiber for extra rigidity and lightness.

A new £40m manufacturing facility, the McLaren Production Centre (MPC) is currently under construction adjacent to the MTC site, and will open in spring 2011. McLaren Automotive will transfer production of the 12C from the existing MTC assembly line to the MPC in April.

For the fans and enthusiasts, McLaren has provided the a highly detailed report on the car’s tech specs, production process, even the dealers and the global McLAren network. Here’s it goes if you are interested. Buckle up:

The McLaren Vision

The answer lies with the vision and ambition of McLaren Automotive’s Executive Chairman, Ron Dennis: “McLaren’s first and founding principle was to compete successfully in motor sport and particularly Formula 1. That goal has taken us to great heights; from an engineering and innovation perspective, and by rewarding our people for their endeavours over many long seasons of top level motor racing. But despite all the trophies and great racing successes, there comes a time when the maturity of a company and its future development depends on broadening its activities.

“We have long held the dream of building a range of innovative McLaren sports cars. Sports cars that take the raw elements of Formula 1 principles, processes and performance and forge them into a unique package that adds the requirements of quality, efficiency, comfort and reliability – traditionally  opposing goals that I know we can deliver.

McLaren’s modern history began 30 years ago with an operation of 50 people dedicated solely to winning Grands Prix. Everything we have achieved as a well-honed and fiercely competitive team over the past three decades has prepared us for this moment. McLaren Group and McLaren Automotive now employ around 1,500 people – all dedicated and passionate about being the best. And about launching a new car company and our first car, of which I am very proud. The 12C and the future range of McLaren sports cars will support the long-term development of McLaren and our people.

This new business will also bring into the UK new investment, a new manufacturing facility – the McLaren Production Centre – and new skilled jobs within the UK’s network of high-tech manufacturing and engineering businesses. I believe that McLaren Automotive is a good example of how the UK can develop a new, innovative and globally influential manufacturing base, through technological innovation in design and build-processes.

“Launching a new car company is a great challenge that is exciting everyone at McLaren. Everything is in place and on schedule for the first of our new range of cars to go on sale in the first half of 2011. These are exciting times – for McLaren, for car enthusiasts and, just as importantly, for people who are passionate about technology, innovation and engineering,”Dennis concluded.

McLaren Automotive today

Although McLaren’s heritage lies principally on the race circuit, the blend of qualities such as ambition, drive and commitment, with more tangible assets such as aerodynamic skills, rapid development through simulation techniques, supreme electronics expertise and a ruthless quest for reliability, have equipped the company to turn Ron Dennis’, and McLaren’s shareholders’ and board members’ dreams into reality.

Taking the vision and turning that into an effective, profitable and world-class car company lies in the hands of McLaren Automotive’s Managing Director, Antony Sheriff,  and the teams run by his fellow directors, Alan Foster (Operations Director), Dick Glover (Technical Director), Paul MacKenzie (Projects Director), Greg Levine (Sales and Marketing Director), Frank Stephenson (Design Director), Mark Vinnels (Programme Director), Carlo della Casa (Engineering Director), Mark Wilson (Finance Director), and Ben Wright (Purchasing Director).

The first car in the range, the 12C is now in the final stages of development, and the first stages of production. It has been designed and developed by a world-class team of engineers and test drivers, and will be built to world-class levels of quality and reliability. All development processes have benefited from McLaren’s expertise in Formula 1, and constant integration with the racing team’s techniques and personnel will set new standards in performance for the road.

Antony Sheriff summed up the focus for McLaren Automotive, inspired by high expectations laid down through the years at McLaren, “The overriding principle that has driven us to where we are today is that every car will be ‘pure’ McLaren.
“This means that each and every component has been conceived, designed and produced to McLaren’s specification to meet the extreme requirements of the 12C. There are no carryover components, because they were not good enough. Similarly, our test programmes, production processes and aftersales plans are also brand new and bespoke to McLaren. We have considered everything from a blank sheet of paper to be the best. Being “as good” as everyone else is not good enough; we need to be the best. This approach has given us a remarkable car with ground-breaking performance in all areas.

Whether it’s the revolutionary carbon MonoCell, the ProActive Chassis Control, or a desire to design cars that can be repaired more quickly and accurately than our competitors, we will deliver cars and a service to our customers of which we are personally proud.

“So, our performance goals do not just relate to the 12C, but to the car ownership experience itself: McLaren Automotive will offer new standards of customer service through its dedicated network of the world’s best car retailers.

“When I came here, Ron inspired me with his belief that winning Formula 1 races was simply doing your job. After that, it was a question of how you won. That’s the winning attitude that permeates throughout McLaren Automotive and sets us apart from our competitors,” Sheriff concluded.

Launch plans and prices

In 2010, McLaren Automotive passed a significant number of milestones in its development as the world’s newest sports car company.  The McLaren Production Centre began construction in March, the 12C made its global public debut at Goodwood Festival of Speed in southern England, in North America the 12C debuted at the renowned Pebble Beach Concours d’Elegance event, and prospective customers for the 12C were given the opportunity to see the car in the metal at a series of exclusive presentations hosted by McLaren Automotive’s new retail partners across the globe.

The 12C goes on sale at a groundbreaking price for a carbon chassis-based car and McLaren Automotive will produce up to 1,000 12Cs for sale worldwide in its first production year.

With the new McLaren Production Centre fully operational, it is anticipated that McLaren  will build up to 4,000 cars across its model range annually by the middle of the decade, a figure that will account for between three and four percent of the annual global market for premium sports cars.

No compromise: McLaren MP4-12C sets new performance and efficiency standards

  • Lightweight design philosophy the foundation to segment-best performance with efficiency
  • Formula 1 integration – technologies, processes and people – inspire the 12C’s headline figures
  • 30 years of carbon composite chassis design at McLaren inspires the 12C’s revolutionary carbon MonoCell
  • See performance data and technology presented in a high quality short film featuring Jenson Button, entitled ‘MP4-12C Official Performance Data’ at

Through a combination of carbon fibre expertise, innovative Formula 1-inspired technologies and development programmes, and a desire to launch a range of ‘pure McLaren’ road cars, the groundbreaking new McLaren MP4-12C has redefined high-performance sports car benchmarks. By March 2010, when the 12C was first revealed, McLaren Automotive was close to achieving its own high performance targets within the intensive testing and development programme. Key segment targets included:

  • lowest CO2 output and best fuel consumption
  • highest power with fastest acceleration and braking across all typical benchmark speed and distance parameters
  • lightest weight, and therefore highest power to weight ratio

All within a package of more subjective, but equally important, benchmarks: comfort, practicality, driveability, and ownership costs. To be a success, and bring innovation to the market, McLaren knew the 12C had to be the first genuine ‘no compromise’ high-performance sports car.

Now, as the first production cars enter the McLaren Technology Centre, segment-best performance data is confirmed. Headline figures include:

  • 0 – 200kph in 9.1s (8.9s on optional Corsa tyres)
  • CO2 emissions of 279g/km (equating to 24.2 EU mpg combined)
  • 0 – 100kph in 3.3s (3.1s with optional Corsa tyres)
  • top speed: 330kph (205mph)
  • 100 – 0 kph in 30.5 m (100 ft)
  • ¼ mile: 10.9s @ 135 mph
  • dry weight (with lightweight options): 1301kgs / 2868 lbs
  • carbon MonoCell chassis weight:  75kgs / 165 lbs
  • power: weight (lightweight options): 461PS / 455bhp per tonne.
  • power: 600PS (592bhp) at 7,000 rpm
  • torque: 600Nm between 3,000 – 7,000 rpm

McLaren performance

The 12C has been created at the McLaren Technology Centre in Woking, UK under the same roof as McLaren Racing and the Vodafone McLaren Mercedes Formula 1 team: ‘performance’ lies at the heart of the 12C and the McLaren Automotive team responsible for its design, development, engineering and now manufacture.

The 12C’s performance is clearly influenced by the McLaren F1 and Mercedes-Benz SLR McLaren road car projects. Most notably, in the competitive step-changes seen on the 12C through carbon composite engineering, packaging, and aerodynamics. But the development and manufacturing teams are also peppered with technicians and engineers from iconic periods in McLaren’s motor racing history: people with priceless experience in challenging design target-setting and innovative engineering problem-solving. And with an inherent ambition to win.

To name but three: Jim Chisman, a McLaren Automotive senior technician was a technician on Niki Lauda’s race team and on the 1981 MP4/1 Formula 1 car; Metin Afiya, General Assembly Production Manager, was an engineer on the Le Mans-winning F1 GTR; Dick Glover, Technical Director at McLaren Automotive, enjoyed 12 years in McLaren Racing where he designed the Formula 1 simulator that has also been used in the 12C development programme.

Dick Glover said: “We’re intensely proud of the 12C and how it stands against its key competitors: cars that are, in their own rights, some of the best sports cars the world has ever seen. The really exciting challenge for us was that to set new performance benchmarks against these cars, we had to introduce innovative new technologies. In that respect, we have worked technically like a Formula 1 team, where you are constantly trying to improve performance not against fixed parameters, but to win against competitors who are also constantly developing and improving.

“The 12C is a huge technical accomplishment, but also a car filled with the passion and dedication that comes with working at McLaren. I am very proud of the team behind its development,” he concluded.

Starting from a clean sheet of paper, the 12C is the first ‘pure McLaren’. From its conception, the 12C has been designed around the driver with a carbon chassis. Every one of the 12C’s components is bespoke, and there to either enhance performance or contribute to the unmatched driving experience.

30 years of carbon innovation

In 1981 McLaren Racing introduced the carbon monocoque to Formula 1: it offered an unbeatable combination of strength and lightness. In 2011, McLaren Racing will compete with its 200th carbon fibre chassis.

The legendary McLaren F1 sports car was the first road car to feature a carbon chassis when it launched in 1993. With 2,153 SLRs manufactured in its seven year production run, the 2003 – 2009 SLR is the most successful car in the £300,000+ price-point and the most successful of any car built on a carbon-fibre chassis.

Now, the 12C takes carbon innovation to a new level. It is based on a unique one-piece moulded carbon chassis: the MonoCell, which weighs just 75kgs (165lbs). The MonoCell concept required it to provide the perfect combination of occupant space, structural integrity, light weight, and relatively low construction costs. And the ideal chassis from which to deliver ground-breaking efficiency and performance in the sports car market.

McLaren MP4-12C performance data

Engine Power 600 PS (441kW) 592 bhp
@ 7000 rpm @ 7000 rpm
Torque 600 Nm 443 lb-ft
@ 3000-7000rpm @ 3000-7000rpm
Weight DIN weight 1434 kg 3161 lbs
Dry weight 1336 kg 2945 lbs
Dry weight 1301kg 2868 lbs
(with lightweight options)
Efficiency CO2 279 g/km 279 g/km
Fuel consumption (combined) 11.7 l/100 km 24.2 mpg (UK)
Power to weight 461 PS/tonne 455 bhp/tonne
(with lightweight options)
CO2/power 0.47 g/km per PS 0.47 g/km per bhp
Speed Maximum speed 330 kph 205 mph
Acceleration 0-100 kph (62 mph) 3.3 s 3.3 s
(3.1 s with Corsa tyre option) (3.1 s with Corsa tyre option)
0-200 kph (124 mph) 9.1 s 9.1 s
(8.9 s with Corsa tyre option) (8.9 s with Corsa tyre option)
0-400 m / ¼ mile 10.9 s @ 216 kph 10.9 @ 134 mph
0-1000 m 19.6 s @ 272 kph
Braking Braking 200-0 kph          123 m 124-0 mph       403 ft
100-0 kph          30.5 m 62-0 mph         100 ft

All figures apply to a European specification MP4-12C

12C Production Prototypes take ‘final’ 1,000 mile road trip in the global development programme

  • Formula 1 simulator enabled first 12C prototypes to deliver remarkable dynamic performance. A new short film presenting the McLaren simulator and its role in 12C development is available to view at
  • More than 50 12C prototypes over four generations tested by a team with extensive Formula 1 experience in all corners of the globe since 2007
  • McLaren’s ‘Idischleife’ test brings Nürburgring Nordschleife to Spain
  • Quality, reliability and ground-breaking performance signed-off during final development drive from McLaren in Woking to Portimão in Portugal

McLaren Automotive’s vehicle development team has been testing prototype versions of the innovative new McLaren MP4-12C high-performance sports car around the world since 2007.  And the development programme recently completed the car’s final ‘sign-off’ 1,000 mile development drive.

Four Production Prototype 12C’s (PP7, PP9, PP10, PP11) departed McLaren’s Woking headquarters for the Autodromo Internacional do Algarve race circuit in Portugal, on Wednesday 12 January, taking a detour en-route to a Spanish proving ground to log the car’s definitive and ground-breaking performance times. All four PP 12C’s arrived in Portimão on the evening of Friday 14 January where they undertook further ‘sign-off’ tests.

Antony Sheriff, McLaren Automotive’s Managing Director: “I am immensely proud of the 12C development team. I don’t believe any car company in the world has put as much effort, innovation, passion and sheer determination into launching a car as McLaren has with the 12C. But this attitude is all we know: good enough is not good.

“Both in simulation, and in the real world on road and track, we have gone to extremes to ensure the 12C stands up to the performance and quality we know our prospective customers demand. Even as we launch the 12C and begin testing future models, we continue to test the 12C’s long-term durability,” Sheriff concluded.

The world’s most advanced simulator

The 12C development programme was conceived under the title ‘Project 11’. In 2005, a decision was taken by McLaren to launch its first ever ‘pure McLaren’ road car.  A team was then assembled combining individuals with extensive experience designing and developing successful McLaren Formula 1 race cars, with several senior personnel responsible for development and production of the Mercedes-Benz SLR McLaren, which, with 2,153 manufactured by McLaren Automotive, is the world’s most successful super sports car.

Innovation through technology is a challenge set to all of McLaren’s designers and engineers. In Formula 1, the McLaren team was the first to bring a carbon monocoque chassis to motorsport in 1981.  Just a few years later, every competitor on the Formula 1 grid had followed suit. With race car development opportunities now limited due to the introduction of restrictive legislation in Formula 1, McLaren relies heavily on its technically advanced simulator, which is housed in a secure suite at the company’s McLaren Technology Centre (MTC) home in Woking, UK.

The McLaren simulator is a software-based virtual environment which is able to accurately replicate the driving experience on any road or track surface in the world.  When preparing for real-world circuit testing, a programme is run by the McLaren Automotive development team uploading data to the simulator including corner radii, gradient, track width and the 12C’s performance parameters.  The results are astonishingly accurate.

Dick Glover, Technical Director at McLaren Automotive, said: “Having the McLaren simulator at our disposal from the start of the 12C development programme has been a tremendous asset.  We were able to accurately predict the dynamic performance of our very first concept-phase vehicle and ensure that it was suitable for extreme testing from day one. It would be incredibly difficult to achieve similar results if you were designing and building a car without simulation.

“We use professional racing drivers in our development team. Throughout the real-world testing programme we continually schedule time for them in the simulator to fine tune the performance and driving characteristics of the 12C. This experience is then validated back against real-world conditions at one of the test facilities we use around the world. It is an ongoing, dynamic, feedback process that mixes the best of technology with the best hands-on track work.”

The 12C development team has also taken simulation to a new level as they seek to ensure the fleet of prototypes are pushed to their absolute limits, reproducing the impact of the famous Nürburgring Nordschleife at a Spanish test facility. The Nordschleife in Germany is regarded as the world’s ultimate test circuit due to its combination of challenging surfaces and 20.81km (12.93m) length. McLaren Automotive has visited the Nordschleife on several occasions for periods of sustained testing, but with the circuit being closed during winter months, the development team has had to identify a way of recreating the extreme conditions found at the Nordschleife in a different environment.

Dick Glover said: “We have a permanent test base at the Applus IDIADA proving ground in Northern Spain. Our team of engineers has taken data from the Nordschleife circuit including lateral g performance, vertical road inputs, engine throttle position and gearing, and created a programme which can then be run at IDIADA, which we call the ‘Idischleife Concept’.

“This programme allows us to undertake challenging and aggressive testing to the level experienced at the Nordschleife but at a location where we can run testing literally twenty-four hours, seven days a week and quickly move the 12C closer to its development targets,” Glover concluded.

Four generations of prototypes tested in all four corners of the world

The first Concept Prototype (CP) 12C’s were built in 2007. These ‘mule’ vehicles were designed to test aerodynamic, powertrain, drivetrain and chassis configuration proposals. Production Prototypes (PP) are now entering a high-mileage real-world durability phase of an initial 50,000 miles.

An evolution of prototype vehicles took place between these two phases, with each new generation of prototype receiving the latest available iterations of technologies, including the 12C’s M838T twin-turbo engine, its seven speed SSG transmission, suspension geometry and electrical architecture. More than 50 cars have been built over the following prototype phases:

  • Concept Prototype (CP)
  • Experimental Prototype (XP)
  • Validation Prototype (VP)
  • Production Prototype (PP)

This fleet has been tested in every regional market where the car will be sold, including Bahrain and Nevada in the summer, and the Arctic in winter. The simple aim, to achieve unprecedented levels of performance but also guarantee the levels of quality, reliability and durability with which McLaren expects to delight future customers.

Geoff Grose, McLaren Automotive Head of Testing and Development said: “We’ve undertaken rigorous test schedules in every imaginable environment. Our teams have tested 12C prototypes in Sweden for cold weather programmes, Bahrain in summer dust storms, Arizona at temperatures upwards of 115°F, South Africa for high altitude testing and endless circuit and road testing in Europe.

“McLaren has established bases at IDIADA in northern Spain and the Prototipo facility near Nardò in southern Italy.  At both locations we have run a number of 24 hour sessions, as well as 18 hour sessions between eight in the morning until two the next morning. The remaining six hours allow time for a team to service and implement development changes ready for the next day’s testing to begin without interruption. Whole-car testing undertaken in this way is incredibly demanding, but bears an uncanny resemblance to the way our Formula 1 team develops race-winning cars.”

Data collection and analysis: the McLaren way

At the IDIADA and Nardò proving grounds, McLaren Automotive has ongoing access to dynamic platforms, handling and high speed circuits, and challenging local roads on which to test a number of 12C performance attributes. Subjective attributes appraised include: vehicle design and ergonomics; interior comfort and richness; ride and handling; steering; braking; noise and vibration harshness; engine; transmission.

Mark Vinnels, Programme Director at McLaren Automotive said: “We have benchmark tested every competitor model to the 12C and, as a package, I believe our car is unmatched in every respect. We have higher power, better structural performance through the 12C’s carbon MonoCell, and the level of refinement in its ride quality is outstanding.”

Objective, data-based appraisals are undertaken using a data-logging system developed by McLaren Electronic Systems Ltd (MESL). The HSL-500 high speed data logger is fitted to several prototype 12Cs and records data at rates up to 400kHz.  The core of this system is used by the Vodafone McLaren Mercedes Formula 1 team, but is stretched further on the 12C to cope with close to 20 ECU systems spread over two CAN bus systems. The data logger can be configured to log over 1,000 channels of data and is ideally suited for vehicles requiring a large number of data to be simultaneously tracked from multiple channels. This includes cars that are dedicated to dynamic and thermal testing. In addition to logging data from the 12C prototype’s CAN bus network, data is recorded from close to 100 specifically positioned pressure transducers, lasers, accelerometers, displacement sensors, thermocouples, strain gauges and GPS devices.

Data logging has been imperative to the 12C development programme.  Every development vehicle has been fitted with a MESL data logger to capture every moment the vehicle turns a wheel to ensure that the engineers can quickly analyse, identify and rectify any issues, as well as ensuring optimal development of the vehicle. Much of this input is then fed back into the simulation programme, and the process continues the real-world:simulation development cycle. Using the MESL system ensures the development programme maintains its swift pace, whereby modifications and technology calibration changes can be performed promptly to increase the performance and reliability of each and every vehicle.

New McLaren Production Centre and 35 McLaren retailers highlight global car company aspirations

  • McLaren Production Centre (MPC) to build all future McLaren high-performance sports cars
  • Capacity for a range of around 4,000 McLarens by the middle of the decade
  • Up to 300 skilled jobs will be created to support McLaren Automotive’s production plans
  • Global retail network of dedicated McLaren dealerships takes shape

McLaren Automotive is launching more than just a new car this spring: 2011 will see the arrival of a new global car company.

To build a brand new car is a challenge; to build a brand new high-performance sports car that is ground-breaking, efficient, high-quality, lightweight, practical, dynamic, safe, comfortable, and visually arresting is a greater challenge still.

In spring 2011, McLaren Automotive will take the challenge to a rare, and possibly unique, level. Just a few months from the launch of the MP4-12C, the new company is already working on the design and development of a range of premium high-performance sports cars that are bespoke, innovative and unique. It will then produce them in the McLaren Production Centre (MPC), a brand new manufacturing facility linked to the McLaren Technology Centre (MTC), the home of McLaren Racing and the Vodafone McLaren Mercedes Formula 1 team. Not only that, but a global network of dedicated McLaren retailers have been appointed to service customers and cars to a higher level of quality than any premium sports car business has ever offered.

In spring 2011, McLaren Automotive will open the doors to the all-new £40m MPC on a site adjacent to the company’s headquarters in Woking, England. A range of innovative McLaren sports cars will be built at the MPC, beginning with production of up to 1,000 12Cs for worldwide distribution this year, to be distributed and serviced by an initial 35 global retailers in all major established markets.

McLaren Production Centre

Ron Dennis, McLaren Automotive’s Executive Chairman said: “We have approached the MPC planning and construction programme in the same rigorous, detailed and challenging manner as we would start a Grand Prix season or as we have managed the research, development and launch of the new McLaren Automotive car company.

“Every detail has been considered and solutions resolved, whether that is on the production facility’s timing and layout, the local sensitivities for the impact of the new facility, or how we deal with details such as keeping the site and surrounding roads clean and as traffic-free as possible.”

Construction of MPC started on Monday 1 March 2010, following a rigorous planning process that took into account all local concerns over the MPC’s impact on traffic, jobs, and the environmental and visual impact. It will have a clear McLaren style and will espouse all the virtues of the MTC. It is due for completion approximately one year later, with the first 12Cs due to be built there in May.

As with McLaren’s MTC headquarters, the MPC was designed by Fosters + Partners and care has been taken to ensure that the building fits perfectly into its environment.  Linked to the MTC by a subterranean pedestrian tunnel, production engineers and planners continue to benefit from the instant access they currently enjoy to the design and engineering teams at McLaren Automotive and McLaren Racing.

Development of the MPC reflects McLaren Group’s approach to innovation in manufacturing and engineering. MPC will feature a General Assembly area similar in specification to the existing MTC production area; clinical precision and remarkable cleanliness are guaranteed. Test zones including a rolling road and monsoon wash are housed adjacent to a cutting-edge paint facility, and may be viewed from a mezzanine balcony at one end of the MPC assembly hall.

The 32,000-square metre two-storey MPC is located to the south-east of the MTC, sharing a common language of details and materials: the new building is clad in aluminium tubes, the rounded corners of its rectilinear plan echo the curves o

Photo of the day

Choose Make

Select make
Select model
Select year